Análise e Processamento de Sinal e Imagem

II - Filtros Analógicos e Digitais

António M. Gonçalves Pinheiro

Departamento de Física Universidade da Beira Interior Covilhã - Portugal

pinheiro@ubi.pt

Filtros Analógicos e Digitais

- 1. Filtros de Sinais Contínuos
- 2. Diagramas de Bode
- 3. Amostragem de Sinais Contínuos
- 4. Filtros de Sinais Digitais
- 5. Filtros IIR e FIR

Filtros

Consideremos um Sistema Linear e Invariante no Tempo:

Contínuo

Discreto

$$x(t)$$
 $h(t)$ $y(t)$

 $\boldsymbol{h}(t)$ - respost a impulsiva do SLIT

 $y(t) = x(t) \oplus h(t)$

$$Y(j\omega) = X(j\omega)H(j\omega)$$

 $H(j\omega)$ - Função de Transferência do SLIT

$$x[n] = h[n] = y[n]$$

 $\boldsymbol{h}[\boldsymbol{n}]$ - respost a impulsiva do SLIT

 $y[n] = x[n] \oplus h[n]$

$$Y\left(e^{j\Omega}\right) = X\left(e^{j\Omega}\right)H\left(e^{j\Omega}\right)$$

 $H\left(e^{j\Omega}\right)$ - Função de Transferência do SLIT

Filtros

Filtro - sistema que selecciona, enriquece, ou remove componentes do sinal.

Exemplos de Filtros:

• Filtros que seleccionam bandas de Frequências (passa-baixo, passa-banda e passa-alto e rejeita-banda).

- Filtros equalizadores (Ex.: de fase).
- Filtros para remoção de ruído.

Função de Transferência Genérica

$$H(j\omega) = \frac{k_o(1+j\omega T_1)\left(1+2j\omega\xi_Z/\omega_{n_Z}+(j\omega/\omega_{n_Z})^2\right)}{(j\omega)(1+j\omega\tau_1)\left(1+2j\omega\xi_P/\omega_{n_P}+(j\omega/\omega_{n_P})^2\right)}$$

Características de $H(j\omega) = |H(j\omega)| e^{j\phi_{H(j\omega)}}$:

Ganho:

• k_o

Polos:

- um polo real em $-1/\tau_1$.
- um polo em Zero.
- dois polos complexos conjugados (caracterizados por $(\omega_{n_P}, \xi_P < 1))$

Zeros:

- um zero real em $-1/T_1$.
- dois zeros complexos conjugados (caracterizados por $(\omega_{n_Z}, \xi_Z < 1))$

Diagramas de Bode: Representação Gráfica de

$$H(j\omega) = |H(j\omega)| e^{j\phi_{H(j\omega)}}$$

Absissa: ω escala logaritmica $\rightarrow \log \omega$

Digrama de Amplitude: $20 \log_{10} |H(j\omega)|$ Soma de cada uma das componentes individuais (devido ao logaritmo, as multiplicações passam a somas)

$$20 \log_{10} |H(j\omega)| = 20 \log_{10} |k_o| + 20 \log_{10} |1 + j\omega T_1| +20 \log_{10} |1 + 2j\omega \xi_Z / \omega_{n_Z} + (j\omega / \omega_{n_Z})^2 | -20 \log_{10} |j\omega| - 20 \log_{10} |1 + j\omega \tau_1| -20 \log_{10} |1 + 2j\omega \xi_P / \omega_{n_P} + (j\omega / \omega_{n_P})^2 |$$

Digrama de Fase: $\phi_{H(j\omega)}$

Soma de cada uma das componentes individuais

$$\begin{split} \phi_{H(j\omega)} &= \arg \left\{ k_o \right\} + \arg \left\{ 1 + j\omega T_1 \right\} \\ &+ \arg \left\{ 1 + 2j\omega \xi_Z / \omega_{n_Z} + (j\omega / \omega_{n_Z})^2 \right\} \\ &- \arg \left\{ j\omega \right\} - \arg \left\{ 1 + j\omega \tau_1 \right\} \\ &- \arg \left\{ \left\{ 1 + 2j\omega \xi_P / \omega_{n_P} + (j\omega / \omega_{n_P})^2 \right\} \right\} \end{split}$$

*

Polo Real:
$$G = 1/(1 + j\omega\tau_1), \omega_p = -1/\tau_1$$

1. Amplitude:
 $|G|_{dB} = -20 \log_{10} \sqrt{1 + (\omega/\omega_p)^2}$
 $\omega \to 0 \Rightarrow |G|_{dB} \to 0$
 $\omega = \omega_p \Rightarrow |G|_{dB} = -3dB$
 $\omega >> \omega_p \Rightarrow$
 $|G|_{dB} \to -20 \log_{10}(\omega) + 20 \log_{10}(\omega_p)$
2. Fase: $\phi_G = -\arctan(\omega/\omega_p)$
 $\omega \to 0 \Rightarrow \phi_G \to 0$
 $\omega = \omega_p \Rightarrow \phi_G = -\pi/4$
 $\omega >> \omega_p \Rightarrow \phi_G \to -\pi/2$
 $\pi/2$
 $\pi/2$

Polos Complexos Conjugados:
$$G = 1/(1 + 2j\omega\xi_P/\omega_{n_P} + (j\omega/\omega_{n_P})^2), \quad \text{com } 0 < \xi_P < 1$$

1. Amplitude:

$$|G|_{dB} = -20 \log_{10} \sqrt{(1 - (\omega/\omega_{n_P})^2)^2 + (2\xi_P \,\omega/\omega_{n_P})^2}$$

$$\bullet \omega \to 0 \Rightarrow |G|_{dB} \to 0$$

$$\bullet \omega = \omega_{n_P} \Rightarrow |G(\omega_{n_P})|_{dB} = -20 \log_{10}(2\xi_P)$$

$$\bullet \text{ Se } 0 < \xi_P < 1/\sqrt{2} \text{ existe máximo}$$

$$\omega_R = \omega_{n_P} \sqrt{1 - 2\xi_P^2} \Rightarrow$$

$$|G(\omega_R)|_{dB} = -20 \log_{10}(2\xi_P \sqrt{1 - \xi_P^2})$$

$$\bullet \omega >> \omega_{n_P} \Rightarrow$$

$$|G|_{dB} \to -40 \log_{10}(\omega) + 40 \log_{10}(\omega_{n_P})$$

۲

20

Polo na Origem: $G = 1/j\omega, \omega_p = 0$

$$|G|_{dB} = -20\log_{10}(\omega)$$

2. Fase: $\phi_G = -\pi/2$

Exemplo

$$G(s) = \frac{10^3 s (s + 316) (s + 1000)}{(s^2 + 31.6s + 10^5) (s^2 + 10^3 s + 10^7)}$$

Exemplo $G(s) = \frac{10^3 s (s + 316) (s + 1000)}{(s^2 + 31.6s + 10^5) (s^2 + 10^3 s + 10^7)}$

$$K|_{\omega=1} = 3.16 * 10^{-4} \quad \Rightarrow \quad G_{dB}(\omega=1) = -70 dB$$

- $\omega_{z_1} = 0 \, rad/seg$
- $\omega_{z_2} = 316 \, rad/seg$
- $\omega_{z_3} = 1000 \, rad/seg$

 $\omega_{np_1} = 316 \ rad/seg, \quad \xi_{p_1} = 0.05 \quad \Rightarrow \quad G_{dB}(\omega_{np_1}) = 20 \log(1/2\xi_{p_1}) = +20 dB$ $\omega_{np_2} = 3160 \ rad/seg, \quad \xi_{p_2} = 0.158 \quad \Rightarrow \quad G_{dB}(\omega_{np_2}) = 20 \log(1/2\xi_{p_2}) = +10 dB$

Diagrama de Amplitude

Diagrama de Fase

۲

Filtro Passa Baixo Ideal

• Amplitude:

$$|H(j\omega)| = \begin{cases} 1 & |\omega| < \omega_c \\ 0 & |\omega| > \omega_c \end{cases}$$

• Fase:

$$\phi_{H(j\omega)} = \begin{cases} -\omega t_0 & |\omega| < \omega_c \\ 0 & |\omega| > \omega_c \end{cases}$$

Filtros Passa Baixo Ideal

 $\overset{TF^{-1}}{\longrightarrow}$

$$H(j\omega) = \begin{cases} e^{-j\omega t_0} & |\omega| < \omega_c \\ 0 & |\omega| > \omega_c \end{cases}$$

$$h(t) = \frac{\operatorname{sen}(\omega_c(t - t_0))}{\pi(t - t_0)}$$
$$h(t) = \frac{\omega_c}{\pi} \operatorname{sinc}\left(\frac{\omega_c}{\pi}(t - t_0)\right)$$

Em que
sinc
$$(\omega t) = sen(\omega t)/(\pi \omega t)$$

Factores de Projecto:

- Banda de passagem $[0, \omega_p]$
- Banda de transição $[\omega_p, \omega_s]$

Filtros mais usuais:

- Filtros de Butterworth
- Filtros de Chebyshev
- Filtros Elípticos

Filtros Reais - Filtros de Butterworth

Função de Butterworth de ordem K:

$$|H(j\omega)|^2 = \frac{1}{1 + (\omega/\omega_c)^{2K}}$$

Para o Filtro de Butterworth são escolhidos os polos da função de Butterworth que têm parte real negativa, de forma a obtermos um sistema estável.

Frequency (rad/s)

Exemplos ($\omega_c = 1$):

- $K = 2 \Rightarrow s = -\sqrt{2}/2 \pm j\sqrt{2}/2$
- $K = 3 \Rightarrow s = -1$ e $s = -1/2 \pm j\sqrt{3}/2$
- $K \Rightarrow s = e^{j\pi(2n+K-1)/(2K)}$, com n = 1, 2, ..., K

Filtros Reais - Filtros de de Chebyshev e Elípticos

- Polos dos Filtros de Chebyshev são retirados de elipses em vez do círculo unitário.
- Os Filtros de Chebyshev apresentam Ripple na banda de passagem.
- Normalmente os polos são retirados de tabelas apresentadas em função da ordem do filtro e do Ripple na banda de passagem.
- O aumento do Ripple seleccionado vai permitir diminuir a largura da banda de transição.
- Filtros Elípticos resultam da composição de filtros de Chebyshev e filtros de Chebyshev Invertidos (apresentam riple na banda de paragem).

Exemplo de Filtro de Chebyshev

Exemplo de Filtro Elíptico

Filtros estudados são filtros normalizados (passa-baixos com $\omega_c=1$) Passagem para filtros não normalizados:

 $B = \omega_2 - \omega_1$ - largura de banda.

Filtros de Butterworth

Diagramas de Bode

Filtros de Chebyshev (Ripple 10dB)

Diagramas de Bode

Filtros de Chebyshev (Ripple 1dB)

Diagramas de Bode

Filtros de Chebyshev (Ripple 0.2dB)

Comparação de Filtros de ordem 5 Butterworth (Vermelho) e Chebyshev com ripple de 0.2 (Azul escuro) e 1 dB.

Projecto de Filtros Reais

Dimensionamento de filtros:

- Escolha do tipo e da ordem N do filtro
- Ripple
- Matlab

[z,p,k]=buttap(N) - resulta filtro de Butterworth de ordem N

[z,p,k]=cheb1ap(N,R) - resulta filtro de Chebyshev de ordem N com Ripple de R dB na banda de passagem

[z,p,k]=ellipap(N,Rp,Rs) - resulta filtro Elíptico de ordem N com Ripple de Rp dB na banda de passagem e Rs na banda de paragem

zpk(z,p,k) - resulta a função de transferência do filtro

• Tabelas

Projecto de Filtros Reais

Circuito de filtro passa baixo de primeira ordem:

$$\frac{V_o(s)}{V_i(s)} = -\frac{R_f}{R_1} \frac{1}{(1+sR_fC_f)}$$

$$\frac{V_o(s)}{V_i(s)} = \frac{1}{s^2 R_1 R_3 C_2 C_4 + s C_4 (R_1 + R_3) + 1}$$

Projecto de Filtros Reais

Circuito de filtro passa alto de primeira ordem:

$$\frac{V_o(s)}{V_i(s)} = -\frac{sR_fC_1}{(1+sR_fC_f)}$$

Circuito de filtro passa alto de segunda ordem:

$$\frac{V_o(s)}{V_i(s)} = \frac{s^2 R_2 R_4 C_1 C_3}{s^2 R_2 R_4 C_1 C_3 + s R_2 (C_1 + C_3) + 1}$$

Amostragem

Teorema (da amostragem/de Nyquist-Shannon)

Um sinal x(t) limitado em banda, tal que $X(j\omega) = 0$ para $\omega > \omega_M$ pode ser completamente reconstruido se for amostrado com uma frequência de amostragem $\omega_a \ge 2\omega_M$.

Amostragem

Sinal Amostrado:

$$x_a(t) = \sum_{k=-\infty}^{\infty} x(kT_a)\delta(t - kT_a)$$

Espectro à saída do sistema de amostragem:

$$X_a(j\omega) = \sum_{k=-\infty}^{\infty} X(j(\omega - k\omega_a), \ \omega_a = 2\pi/T_a)$$

Espectro Final (
$$\omega_a = 2\omega_M$$
)

Amostragem

Amostragem - "Aliasing"/ Sub-amostragem

"Aliasing" (Sub-amostragem)- Fenómeno que ocorre quando não se verifica $\omega_a \ge 2\omega_M$

Recuperação Possível

Caso de "Aliasing"

Exemplo de fenómeno de "Aliasing": Rodas a rodar no cinema com velocidade diferente da real.

Amostragem

Sistema de Amostragem

Sistema de Processamento de Sinal Digital

Filtros Digitais

Exemplo de Típico de Filtro Analógico implementado com filtro Digital

Nota:

Na implementação de um filtro digital os dados de entrada e os cálculos internos são todos quantizados em precisão finita, resultando em erros de arredondamento que degradam o funcionamento previsto teoricamente.

Filtros Digitais

M-1

Filtros Analógicos

Caracterizados por respostas impulsivas de duração infinita

Equação Diferencial de Coeficientes constantes

$$H_{a}(s) = \frac{Y_{a}(s)}{X_{a}(s)} = \frac{\sum_{k=0}^{N-1} d_{k} s^{k}}{\sum_{k=0}^{N-1} c_{k} \frac{d^{k} y(t)}{dt^{k}}} = \sum_{k=0}^{M-1} d_{k} \frac{d^{k} x(t)}{dt^{k}}$$

Filtros Digitais

Equação às Diferenças de Coeficientes constantes

$$H_d(z) = \frac{Y_d(z)}{X_d(z)} = \frac{\sum_{k=0}^{M-1} b_k z^k}{\sum_{k=0}^{N-1} a_k z^k} \implies \sum_{k=0}^{N-1} a_k y[n-k] = \sum_{k=0}^{M-1} b_k x[n-k]$$

Filtros Digitais

$$H_{d}(z) = \frac{Y_{d}(z)}{X_{d}(z)} = \frac{\sum_{k=0}^{N-1} b_{k} z^{k}}{\sum_{k=0}^{M-1} a_{k} z^{k}} \implies \sum_{k=0}^{N-1} a_{k} y[n-k] = \sum_{k=0}^{M-1} b_{k} x[n-k]$$

• FIR - Finite Impulse Response Caracterizados por respostas impulsivas de duração finita

$$a_k = 0, \operatorname{com} k \ge 1 \implies y[n] = \sum_{k=0}^{M-1} b_k x[n-k]$$

• IIR - Infinite Impulse Response Caracterizados por respostas impulsivas de duração infinita

Filtros Digitais - Propriedades dos Filtros FIR

FIR - Finite Impulse Response

- 1. Têm memória finita, logo qualquer transitório inicial é de duração limitada.
- 2. São estáveis BIBO, ou seja, no sentido em que uma entrada limitada origina uma saída limitada
- 3. Permitem qualquer resposta em Amplitude desejável, com uma resposta em Fase linear (ou seja, sem distorção de fase)

Desenho de Filtros Digitais a partir de Filtros Analógicos

Este procedimento tem as seguintes vantagens:

- 1. As técnicas de projecto de Filtros analógicos estão bastante desenvolvidas.
- 2. Alguns métodos de projecto resultam em filtros com fórmulas relativamente simples, originando filtros com desenho simples.
- 3. Em muitas aplicações existe vantagem em utilizar um Filtro digital que permita simular (em computador) o funcionamento de filtros analógicos

FIR - Finite Impulse Response

São filtros digitais de resposta finita.

Considerando um filtro genérico descrito pela equação as diferenças:

$$\sum_{k=0}^{N-1} a_k y[n-k] = \sum_{k=0}^{M-1} b_k x[n-k]$$

resulta no filtro FIR de comprimento M (ordem M - 1):

$$a_k = 0, \operatorname{com} k \ge 1 \implies$$

 $y[n] = \sum_{k=0}^{M-1} b_k x[n-k]$

em que se considera $a_0 = 1$ para normalização

Nota: Considerando de forma geral o somatório de convolução

$$y[n] = \sum_{k=0}^{M-1} h[k]x[n-k]$$

E sendo

$$y[n] = \sum_{k=0}^{M-1} b_k x[n-k]$$

Então $h[k] = b_k$, ou seja:

$$h[n] = \sum_{k=0}^{M-1} b_k \delta[n-k]$$

A função de transferência é dada por:

$$H(Z) = \sum_{k=0}^{M-1} b_k Z^{-k}$$

Pode-se provar que um filtro FIR de comprimento M (ordem M - 1) tem **fase linear** se respeitar:

$$h[n] = \pm h[M - 1 - n]$$

Filtros FIR Simétricos: h[n] = +h[M - 1 - n]

Nesse caso a fase do filtro será dada por:

$$\phi_{H\left(e^{j\Omega}\right)} = \begin{cases} -\Omega \frac{M-1}{2} & \text{, se } H_r\left(e^{j\Omega}\right) > 0\\ -\Omega \frac{M-1}{2} + \pi & \text{, se } H_r\left(e^{j\Omega}\right) < 0 \end{cases} \quad \operatorname{com} H\left(e^{j\Omega}\right) = H_r\left(e^{j\Omega}\right) e^{-j\Omega(M-1)/2} \end{cases}$$

Filtros FIR Antisimétricos: h[n] = -h[M - 1 - n]

Daqui resulta que:

$$h\left(\frac{M-1}{2}\right) = 0$$
, para M ímpar

Nesse caso a fase do filtro será dada por:

$$\phi_{H\left(e^{j\Omega}\right)} = \begin{cases} -\Omega \frac{M-1}{2} + \pi/2 & \text{, se } H_r\left(e^{j\Omega}\right) > 0\\ -\Omega \frac{M-1}{2} + 3\pi/2 & \text{, se } H_r\left(e^{j\Omega}\right) < 0 \end{cases} \operatorname{com} H\left(e^{j\Omega}\right) = H_r\left(e^{j\Omega}\right) e^{-j\Omega(M-1)/2 + \pi/2} \end{cases}$$

Desenho de Filtros FIR a partir de um Filtro requerido

Truncar a resposta impulsiva do filtro requerido $h_R[n]$ multiplicando por uma janela w[n]:

$$h_{FIR}[n] = h_R[n] \times w[n]$$

A janela rectangular é a mais intuitiva, mas apresenta desvantagens devido ao fenómeno de Gibbs:

$$w[n] = \begin{cases} 1, & 0 \le n \le M - 1 \\ 0, & c.c. \end{cases}$$

Janelas de truncatura w[n]

Hamming

$$w[n] = 0.54 - 0.46 \cos\left(\frac{2\pi n}{M-1}\right), \ 0 \le n \le M-1$$

Hanning

$$w[n] = \frac{1}{2} \left(1 - \cos\left(\frac{2\pi n}{M-1}\right) \right), \ 0 \le n \le M-1$$

Bartlett

$$w[n] = \begin{cases} 2n/(M-1), & 0 \le n \le (M-1)/2\\ 2-2n/(M-1), & (M-1)/2 \le n \le M-1 \end{cases}$$

Blackman

$$w[n] = 0.42 - 0.5 \cos\left(\frac{2\pi n}{M-1}\right) + 0.08 \cos\left(\frac{4\pi n}{M-1}\right), \ 0 \le n \le M-1$$

Janelas de truncatura w[n]

Comando do Matlab

b=fir1(M-1,wc) - dimensiona filtro FIR

b - vector com coeficientes do filtro *M* - comprimento do filtro FIR (ordem *M*-1) *wc* - frequência de corte normalizada]0, 1[

Por defeito usa a janela de Hamming. No entanto podem-se usar outras janelas:

b=fir1(M-1,wc,boxcar(M)) - usa janela rectangular b=fir1(M-1,wc,hamming(M)) - usa janela de hamming (o mesmo que por defeito)

Projecto de Filtros IIR

1. Invariância Temporal

Consiste em amostrar a respota impulsiva do filtro analógico.

2. Desenho com base na Solução Numérica da Equação diferencial do filtro Analógico

3. Transformada Bilinear

Solução numérica alternativa à aproximação das derivadas por uma equação às diferenças

Projecto de Filtro IIR - Invariância Temporal

Amostragem da resposta impulsiva do Filtro Analógico a digitalizar:

$$h[n] = h_a(nT_a)$$

As transformadas neste caso levam:

$$H(z)|_{Z=e^{sT_a}} = \frac{1}{T_a} \sum_{k=-\infty}^{+\infty} H_a\left(s+j\frac{2\pi}{T_a}k\right)$$

Polos mapeados com: $\Re e\{s\} \le 0$ e $|\Im m\{s\}| \le \pi/T_a$ são mapeados no interior do círculo unitário, $|z| \le 1$

Projecto de Filtro IIR - Invariância Temporal

Resposta em frequência do filtro digital e do filtro analógico relacionam-se por:

$$H(e^{j\Omega}) = \frac{1}{T_a} \sum_{k=-\infty}^{+\infty} H_a\left(j\omega + j\frac{2\pi}{T_a}k\right)$$

Considerando o teorema de amostragem:

Se $H_a(j\omega) = 0$ para $|\omega| \ge \pi/T_a$, então $H\left(e^{j\Omega}\right) = \frac{1}{T_a}H_a(j(\Omega/T)), |\Omega| \le \pi$

Projecto de Filtro IIR - Desenho com base na Solução Numérica da Equação diferencial do filtro Analógico

Sendo $y[n] = y_a(nT_a)$ pode-se definir:

primeira derivada como:
$$\frac{dy_a}{dt} \rightarrow \nabla^1 \{y[n]\} = \frac{y[n] - y[n-1]}{T_a}$$

k-esima derivada como: $\frac{d^k y_a}{dt^k} \rightarrow \nabla^k \{y[n]\} = \nabla^1 \{\nabla^{k-1} \{y[n]\}\}$

Isto origina a seguinte transformada:

$$s = \frac{1 - z^{-1}}{T_a} \iff z = \frac{1}{1 - sT_a}$$

Nota: Este procedimento é altamente insatisfatório para filtros que não sejam filtros passa-baixo. $Im{s}$ a $Re{s}$ $Im{z}$ $Im{z}$ $Im{z}$ $Im{z}$ $Im{z}$ $Im{z}$ $Im{z}$

Projecto de Filtro IIR - Transformada Bilinear

Resolução numérica alternativa - Integra-se a equação diferencial e a aproximação numérica é calculada para o integral

Resulta em:

$$s = \frac{2}{T_a} \frac{1 - z^{-1}}{1 + z^{-1}} \iff z = \frac{1 + (T_a/2)s}{1 - (T_a/2)s}$$

Em termos de frequência discreta (Ω) e contínua (ω):

Projecto de Filtro IIR - Transformada Bilinear

Tem as seguintes propriedades que a fazem ser a preferida:

- Origina Filtros Digitais Estáveis a partir de Filtros Contínuos Estáveis.
- Mapeia o eixo imaginário do plano *s* no círculo unitário do plano *z* (isto evita efeito de "Aliasing").
- Como desvantagem apresenta uma distorção no eixo da frequência.

Transformações de um filtro digital passa-baixo com frequências de corte θ_p

Tipo Filtro	Frequência	Transformação	Fórmulas de Desenho Associado
PASSA BAIXO	Ω_p	$z^{-1} \to \frac{z^{-1} - \alpha}{1 - \alpha z^{-1}}$	$\alpha = \frac{\operatorname{sen}\left((\theta_p - \Omega_p)/2\right)}{\operatorname{sen}\left((\theta_p + \Omega_p)/2\right)}$
PASSA ALTO	Ω_p	$z^{-1} \rightarrow -\frac{z^{-1} + \alpha}{1 + \alpha z^{-1}}$	$\alpha = -\frac{\cos\left((\Omega_p + \theta_p)/2\right)}{\cos\left((\Omega_p - \theta_p)/2\right)}$
PASSA BANDA	Ω_1, Ω_2	$z^{-1} \rightarrow -\frac{z^{-2} - \frac{2\alpha k}{k+1}z^{-1} + \frac{k-1}{k+1}}{\frac{k-1}{k+1}z^{-2} - \frac{2\alpha k}{k+1}z^{-1} + 1}$	$\alpha = \frac{\cos\left((\Omega_2 + \Omega_1)/2\right)}{\cos\left((\Omega_2 - \Omega_1)/2\right)}$ $k = \cot\left(\frac{\Omega_2 - \Omega_1}{2}\right) \operatorname{tg} \frac{\theta_p}{2}$
REJEITA BANDA	Ω_1, Ω_2	$z^{-1} \rightarrow \frac{z^{-2} - \frac{2\alpha k}{k+1}z^{-1} + \frac{1-k}{1+k}}{\frac{1-k}{1+k}z^{-2} - \frac{2\alpha k}{k+1}z^{-1} + 1}$	$\alpha = \frac{\cos\left((\Omega_2 + \Omega_1)/2\right)}{\cos\left((\Omega_2 - \Omega_1)/2\right)}$ $k = \cot \left(\frac{\Omega_2 - \Omega_1}{2}\right) \operatorname{tg} \frac{\theta_p}{2}$

Exemplo de Filtragem - Filtros FIR

Exemplo de Filtragem - Filtros IIR

Exemplo de Filtragem - Resposta em Frequência dos Filtros FIR/IIR

Filtros FIR

Filtros IIR

Exemplo de Filtragem - Comparação Filtros FIR/IIR

Filtros FIR Soma das filtragens (Sinal praticamente recuperado)

Filtros IIR Soma das filtragens (Sinal com distorção de fase)

DFT - Transformada de Fourier Discreta

Transformada de Fourier de Sinais Discretos:

$$X(e^{j\Omega}) = \sum_{n=-\infty}^{+\infty} x[n]e^{-jn\Omega}$$

DFT - Transformada de Fourier Discreta:

Obtem-se amostrando a transformada de Fourier de sinais discretos $X(e^{j\Omega})$ entre $0 \le \Omega < 2\pi$ (um período) N vezes (em intervalos $\Delta\Omega = 2\pi/N$), considerando x[n] uma sucessão de duração finita de comprimento $L \le N$:

$$\tilde{X}[k] = X(e^{j\Omega})|_{\Omega=2\pi k/N} = \sum_{n=0}^{N-1} x[n]e^{-j2\pi kn/N}, \text{ com } k = 0, 1, ..., N-1$$

FFT - Fast Fourier Transform Algoritmo de calculo eficiente da DFT

DFT - Transformada de Fourier Discreta

Considerando:

$$x[n] \stackrel{\text{DFT}}{\longleftrightarrow} \tilde{X}[k]$$

DFT:

$$\tilde{X}[k] = \sum_{n=0}^{N-1} x[n] e^{-j2\pi k n/N}$$
, com $k = 0, 1, ..., N-1$

IDFT (DFT Inversa):

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} \tilde{X}[k] e^{j2\pi kn/N}, \text{ com } n = 0, 1, ..., N-1$$

DFT - Transformada de Fourier Discreta

Relação com a transformada Z

Considerando um sinal x[n] com duração finita de comprimento N (só definida para n = 0, 1, ... N - 1)

$$X(z) = \sum_{n=0}^{N-1} x[n] z^{-n} = \sum_{n=0}^{N-1} \left[\frac{1}{N} \sum_{k=0}^{N-1} \tilde{X}[k] e^{j2\pi kn/N} \right]$$
$$X(z) = \frac{1 - z^{-N}}{N} \sum_{k=0}^{N-1} \frac{\tilde{X}[k]}{1 - e^{j2\pi k/N} z^{-1}}$$

Relação com a transformada de Fourier

$$X(e^{j\Omega}) = \frac{1 - e^{j\Omega(N-1)}}{N} \sum_{k=0}^{N-1} \frac{\tilde{X}[k]}{1 - e^{-j(\Omega - 2\pi k/N)}}$$

Periocidade da DFT da definição da DFT/IDFT pode-se tirar:

> x[n+N] = x[n] para qualquer n $\tilde{X}[k+N] = \tilde{X}[k]$ para qualquer k

Considerando a série de Fourier de um sinal periódico a[k] obtemos:

$$a[k] = \frac{1}{N}\tilde{X}[k]$$

Linearidade

$$\alpha_1 x_1[n] + \alpha_2 x_2[n] \stackrel{\text{DFT}}{\longleftrightarrow} \alpha_1 \tilde{X}_1[k] + \alpha_2 \tilde{X}_2[k]$$

Simetria circular de uma sucessão

Uma DFT de n pontos de uma sucessão x[n] de duração finita, com comprimento $L \leq N$ é equivalente a uma DFT de n pontos de uma sucessão periódica $x_p[n]$ de período N, obtida por extensão periódica de x[n], é dada por:

$$x_p[n] = \sum_{l=-\infty}^{+\infty} x[n-lN]$$

Nota: Se deslocamos a sucessão periódica $x_p[n]$ por k unidades para a direita, resulta uma nova sucessão periódica:

$$x'_{p}[n] = x_{p}[n-k] = \sum_{l=-\infty}^{+\infty} x[n-k-lN]$$

A sucessão de duração finita

$$x'[n] = \begin{cases} x'_p[n], & o \le n \le N-1 \\ 0, & \text{caso contrário} \end{cases}$$

relaciona-se com a sucessão original x[n] por um deslocamento circular.

Ilustração de deslocamento circular

Notação matemática: $x'[n] = x[(n-k)modulo(N)] = x[(n-k)_N]$

Definições:

• Circularidade par

Se a sucessão de N pontos é simétrica relativamente ao ponto zero

$$x[N-n] = x[n], \ 1 \le n \le N-1$$

• Circularidade ímpar

Se a sucessão de N pontos é anti-simétrica relativamente ao ponto zero

$$x[N-n] = -x[n], \ 1 \le n \le N-1$$

• Reversão temporal

Se a sucessão de N pontos é obtida por reversão em torno do ponto zero

$$x[(-n)_N] = x[N-n], \ 0 \le n \le N-1$$

Simetria - Sucessões de valor real

$$x[n] real \Rightarrow \tilde{X}[N-k] = \tilde{X}^*[k] = \tilde{X}[-k]$$

Simetria - Sucessões de valor real e pares

$$x[n] real e par, \text{ ou seja, } x[n] = x[N-n], \ 0 \le k \le N-1 \Rightarrow$$
$$\tilde{X}[k] = \sum_{n=0}^{N-1} x[n] \cos \frac{2\pi kn}{N}, \ 0 \le k \le N-1$$

Simetria - Sucessões de valor real e ímpares

$$\begin{split} x[n] \ real \ e \ impar, \ \mathbf{ou} \ \mathbf{seja}, \ x[n] \ &= \ -x[N-n], \ 0 \le k \le N-1 \Rightarrow \\ \tilde{X}[k] \ &= \ -j \sum_{n=0}^{N-1} x[n] \ \mathbf{sin} \frac{2\pi kn}{N}, \ 0 \le k \le N-1 \end{split}$$

Convolução circular e Multiplicação de DFT's

Convolução circular

$$y[n] = x[n] \otimes h[n] = \sum_{m=0}^{N-1} x[m]h[(m-n)_N], \ n = 0, 1, \dots N-1$$

Multiplicação de DFT's:

$$x[n] \otimes h[n] \stackrel{\text{DFT}}{\longleftrightarrow} \tilde{X}[k] \tilde{H}[k]$$

Multiplicação de duas sucessões:

 $x[n] h[n] \stackrel{\text{DFT}}{\longleftrightarrow} \tilde{X}[k] \otimes \tilde{H}[k]$

Reversão temporal

Se
$$x[n] \stackrel{\text{DFT}}{\longleftrightarrow} \tilde{X}[k]$$
, então
 $x [(-n)_N] = x[N-n] \stackrel{\text{DFT}}{\longleftrightarrow} \tilde{X} [(-k)_N] = \tilde{X}[N-k]$

Deslocamento temporal circular

Se
$$x[n] \stackrel{\text{DFT}}{\longleftrightarrow} \tilde{X}[k]$$
, então $x[(n-l)_N] \stackrel{\text{DFT}}{\longleftrightarrow} \tilde{X}[k] e^{-j2\pi kl/N}$

Deslocamento de frequência circular

Se
$$x[n] \stackrel{\text{DFT}}{\longleftrightarrow} \tilde{X}[k]$$
, então $x[n] e^{j2\pi nl/N} \stackrel{\text{DFT}}{\longleftrightarrow} \tilde{X}[(k-l)_N]$

Propriedade do complexo conjugado

Se
$$x[n] \stackrel{\text{DFT}}{\longleftrightarrow} \tilde{X}[k]$$
, então $x^*[(-n)_N] = x^*[N-n] \stackrel{\text{DFT}}{\longleftrightarrow} \tilde{X}^*[k]$

Correlação circular

Se
$$x[n] \stackrel{\text{DFT}}{\longleftrightarrow} \tilde{X}[k]$$
 e $y[n] \stackrel{\text{DFT}}{\longleftrightarrow} \tilde{Y}[k]$, então
 $r_{xy}[l] = \sum_{n=0}^{N-1} x[n]y^* [(n-l)_N] \stackrel{\text{DFT}}{\longleftrightarrow} \tilde{X}[k] \tilde{Y}^*[k]$

Autocorrelação circular

$$r_{xx}[l] \stackrel{\text{DFT}}{\longleftrightarrow} \left| \tilde{X} \left[k \right] \right|^2$$

Teorema de Parseval

Se
$$x[n] \stackrel{\text{DFT}}{\longleftrightarrow} \tilde{X}[k]$$
 e $y[n] \stackrel{\text{DFT}}{\longleftrightarrow} \tilde{Y}[k]$, então
$$\sum_{n=0}^{N-1} x[n]y^*[n] = \frac{1}{N} \sum_{k=0}^{N-1} \tilde{X}[k]\tilde{Y}^*[k]$$

Se y[n] = x[n]

$$\sum_{n=0}^{N-1} |x[n]|^2 = \frac{1}{N} \sum_{k=0}^{N-1} \left| \tilde{X}[k] \right|^2$$

Calculo eficiente da DFT - FFT (Fast Fourier Transform)

 $W_N^k = e^{-2\pi k/N}$

Filtragem Linear baseada na DFT

Consideremos o sinal x[n] com duração L

$$x[n] = 0, \quad n < 0 \lor n \ge L$$

O filtro FIR é dado pela sua resposta impulsiva h[n] com duração M

$$h[n] = 0, \ n < 0 \lor n \ge M$$

À saída Filtro FIR resulta y[n] com duração L + M - 1

$$y[n] = \sum_{k=0}^{M-1} h[k]x[n-k]$$

que pode ser dado por:

 $y[n] \stackrel{\text{DFT}}{\longleftrightarrow} \tilde{Y}[k] = Y\left(e^{j\Omega}\right)\Big|_{\Omega = 2\pi k/N}$ com N = L + M - 1

Filtragem Linear baseada na DFT

Podemos obter $\tilde{Y}[k]$ fazendo:

$$\tilde{Y}[k] = \tilde{X}[k] \tilde{H}[k], \ k = 0, 1, ..., N-1$$

em que $\tilde{X}[k]$ e $\tilde{H}[k]$ foram preenchidas com zeros para terem dimensão L + M - 1

Aplicação da FFT para calcular as transformadas é de forma genérica mais eficiente do que aplicação da equação às diferenças.

Problema: Sinal de entrada muito longo:

FIR - duração Mx[n] - duração $L \gg M$

Filtragem Linear baseada na DFT

Overlap-save method - Filtragem de longas sequências Consideram-se blocos de dados de N = L + M - 1pontos.

Cada bloco consiste de:

- M-1 elementos do último bloco
- $\bullet~L$ novos dados

No resultado da filtragem os primeiros M - 1 pontos são corrompidos por aliasing e têm que ser eliminados.

Filtragem Linear baseada na DFT

Overlap-add method - Filtragem de longas sequências Consideram-se blocos de dados de entrada de L pontos e as DFT são feitas sobre N = L + M - 1 elementos. Cada bloco consiste de:

- L pontos
- addionados com M-1 zeros

No resultado da filtragem os últimos M - 1 pontos são adcionados aos primeiros M - 1 pontos.

Universidade da Beira Interior

